Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Oxide ceramic electrolytes (OCEs) have great potential for solid-state lithium metal (Li0) battery applications because, in theory, their high elastic modulus provides better resistance to Li0dendrite growth. However, in practice, OCEs can hardly survive critical current densities higher than 1 mA/cm2. Key issues that contribute to the breakdown of OCEs include Li0penetration promoted by grain boundaries (GBs), uncontrolled side reactions at electrode-OCE interfaces, and, equally importantly, defects evolution (e.g., void growth and crack propagation) that leads to local current concentration and mechanical failure inside and on OCEs. Here, taking advantage of a dynamically crosslinked aprotic polymer with non-covalent –CH3⋯CF3bonds, we developed a plastic ceramic electrolyte (PCE) by hybridizing the polymer framework with ionically conductive ceramics. Using in-situ synchrotron X-ray technique and Cryogenic transmission electron microscopy (Cryo-TEM), we uncover that the PCE exhibits self-healing/repairing capability through a two-step dynamic defects removal mechanism. This significantly suppresses the generation of hotspots for Li0penetration and chemomechanical degradations, resulting in durability beyond 2000 hours in Li0-Li0cells at 1 mA/cm2. Furthermore, by introducing a polyacrylate buffer layer between PCE and Li0-anode, long cycle life >3600 cycles was achieved when paired with a 4.2 V zero-strain cathode, all under near-zero stack pressure.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt’s oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.more » « less
- 
            Sodium ion batteries are an emerging candidate to replace lithium ion batteries in large-scale electrical energy storage systems due to the abundance and widespread distribution of sodium. Despite the growing interest, the development of high-performance sodium cathode materials remains a challenge. In particular, polyanionic compounds are considered as a strong cathode candidate owing to their better cycling stability, a flatter voltage profile, and stronger thermal stability compared to other cathode materials. Here, we report the rational design of a biomimetic bone-inspired polyanionic Na3V2(PO4)3-reduced graphene oxide composite (BI-NVP) cathode that achieves ultrahigh rate charging and ultralong cycling life in a sodium ion battery. At a charging rate of 1 C, BI-NVP delivers 97% of its theoretical capacity and is able to retain a voltage plateau even at the ultra-high rate of 200 C. It also shows long cycling life with capacity retention of 91% after 10 000 cycles at 50 C. The sodium ion battery cells with a BI-NVP cathode and Na metal anode were able to deliver a maximum specific energy of 350 W h kg−1 and maximum specific power of 154 kW kg−1. In situ and postmortem analyses of cycled BI-NVP (including by Raman and XRD spectra) HRTEM, and STEM-EELS, indicate highly reversible dilation–contraction, negligible electrode pulverization, and a stable NVP-reduced graphene oxide layer interface. The results presented here provide a rational and biomimetic material design for the electrode architecture for ultrahigh power and ultralong cyclability of the sodium ion battery full cells when paired with a sodium metal anode.more » « less
- 
            Abstract Due to its outstanding safety and high energy density, all‐solid‐state lithium‐sulfur batteries (ASLSBs) are considered as a potential future energy storage technology. The electrochemical reaction pathway in ASLSBs with inorganic solid‐state electrolytes is different from Li‐S batteries with liquid electrolytes, but the mechanism remains unclear. By combining operando Raman spectroscopy and ex situ X‐ray absorption spectroscopy, we investigated the reaction mechanism of sulfur (S8) in ASLSBs. Our results revealed that no Li2S8,Li2S6,and Li2S4were formed, yet Li2S2was detected. Furthermore, first‐principles structural calculations were employed to disclose the formation energy of solid state Li2Sn(1≤n≤8), in which Li2S2was a metastable phase, consistent with experimental observations. Meanwhile, partial S8and Li2S2remained at the full lithiation stage, suggesting incomplete reaction due to sluggish reaction kinetics in ASLSBs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
